
 Skip to main content
 	

	

 	ProPublica
	Local Initiatives
	Data Store

 	
 Donate

	

 Follow us on Twitter

	

 Like us on Facebook

	

 Search

	

 Newsletters

	Graphics & Data
	Newsletters
	About

 	Email Address

 	

 Racial Justice

	

 Health Care

	

 Politics

	

 Education

	More…

 	Series
	Video
	Impact
	

 Search

	

 More

	

		

			

 			

								
				Chapter 3: Turning PDFs to Text

								Dollars for Docs Data Guide: A tutorial on several methods to convert PDFs to spreadsheets.

								
					by Dan Nguyen

					Dec. 30, 2010, 12:21 p.m. EST
				

				

		
			
				
					
				
				Facebook
			
		
	
			
				
					
				
				Twitter
			
		
	
									
				
					
				
				Email
			
		
	
			
				
					
				
			
		
	
			
				
					
				
			
		

			

			

				
				

					
					
					
						
							
								
									
					

									
									
									

« Return to Scraping for Journalism

Update (1/18/2011):We originally wrote that we had promising results with the commercial product deskUNPDF's trial mode. We have since ordered the full version of deskUNPDF and tried using it on some of the latest payments data.

	Adobe’s Portable Document Format is a great format for digital documents when it’s important to maintain the layout of the original format. However, it’s a document format and not a data format.

	Unfortunately, it seems to be treated like a data transfer format, especially by some government agencies and others, who use it to release data that would be much more useful for journalists and researchers as a spreadsheet or even as a plain text file.

	
	In our Dollars for Docs project, companies provided their data in PDF format.
	

Wikipedia has a good list of PDF tools and converters. However, we didn’t find a one-click-does-it-all solution for converting PDFs into spreadsheets while gathering the Dollars for Docs data.

We recently tested the commercial product deskUNPDF on several of the latest payment lists. In the vast majority of entries, deskUNPDF does an accurate conversion. But like the other methods described in this guide, it does not work perfectly for all the sets of data. For example, with the most recent Johnson & Johnson PDF, deskUNPDF omitted some of the text within some cells that contained long strings (like the names of the payees), This required us to manually verify each cell for accuracy.

 Here are three other conversion methods we used for Dollars for Docs that involve a mix of software and coding. However, they still require some manual clean-up, which can be time-consuming for 50+ page documents.

 Note: The following guide is for PDFs that actually have embedded text in them. Can you highlight the text to copy and paste it? Then this is the right guide. Otherwise, for PDFs that are secure, or PDFs that are essentially images of text – such as scanned documents, visit this tutorial.

 Method 1: Third-Party Sites

 Cometdocs and Zamzar are web-based services
	 that convert PDF files that you upload. After a short turnaround time, you’ll receive an e-mail with a download link (as well as an advertisement for their enterprise services).
	

 We’ve had good results from CometDocs. For the Johnson & Johnson (Ortho-Mcneil-Janssen division) file, which you can download here, we still had to manually clean up entries that were split across several lines.

 However, the mistakes in conversion can be more than superficial. For example, using CometDocs on the Eli Lilly PDF yielded this conversion:

 Left: The PDF translated to spreadsheet format; the numbers in red are in the wrong column.
 Right: The original PDF.

 On this page, it appears that an entire column of numbers was shifted over. This is an error that would be difficult to catch without comparing the output to the original PDFs.

 Method 2: Convert to HTML in Acrobat

 As it turns out, Lilly’s PDF has some structure behind it, which we can take advantage of by converting the PDF to HTML. We don’t know of any free PDF to HTML tools, so hopefully your shop already has a copy of Adobe Acrobat Pro.

 After downloading the Lilly report, open it with Acrobat. Then select Save As, then select HTML 3.2 as the format.

 Optional programming

At this point, you are pretty much done. You can use your web browser to open up the gigantic HTML file that was just created, Select All, Copy, and then Paste into Excel. You’ll spend a little time deleting the header rows and finding anomalies, but Excel generally does a good job of automatically converting HTML tables into spreadsheet form.

 With a little programming, you can parse through the file and do some cleanup at the same time (we go into more explanatory detail about the Ruby parsing library, Nokogiri, in the Flash and web scraping tutorials):

	require 'rubygems'
	require 'nokogiri'

	#Open the file using the Nokogiri library
	page = Nokogiri::HTML(open("EliLillyFacultyRegistryQ22010.html"))	

	#We use Nokogiri's css method to tell it we want all the table row elements:
	rows = page.css('tr')

	# rows is now an Array containing (use rows.length to find this out) 4,596 entries

	# In this file, each row's first child element is
	, with the rest being 	

	rows.each do |row|
	 # select the TH and TD elements within each TR
	 columns = row.css('td,th')

	 # the 'columns' array is now an array of the actual text within those elements
	 columns = columns.map{|t| t.text}

	 # Now join each element in the columns array with a tab-character, and then print it out as a line
	 puts columns.join("\t")

	end	

	The above code will print out all the PDF contents, including the header row and narrative description text. So, assuming that actual data fits in a specified format (a table row with nine columns), we can alter the script to separate the rows into different files. Rows with three columns, for example, outputs to a file called 'pdf-columns-3.txt'

	When you do this, you'll find that all valid data rows have nine columns. But there is one more issue with this particular PDF: some rows have each column value repeated twice:
	

	

In the highlighted row, the values are repeated twice in each column.

So, for data rows in which there are nine columns, we can check to see if the third column (state initials) contains exactly two capital letters. If not, then the column has the duplicated-data error. In this special case, we can print the corrected data (by splitting the duplicated-data values in half) next to the erroneous columns and then go into a spreadsheet program to compare the results. Here is the code for the entire process:

	

	require 'rubygems'
	require 'nokogiri'
	datarows_by_column_count = {}
	Nokogiri::HTML(open("EliLillyFacultyRegistryQ22010.html")).css('tr').select{|row| !row.text.match(/2010 To Date Aggregate/) }.each_with_index do |row, line_number|
	 cols = row.css('th,td').map{|t| t.text.strip}
	 if cols.length == 9 # a valid data row
	 if !cols[2].match(/^[A-Z]{2}$/)
	 # if the state initial column does not contain exactly two capital leters
	 corrected_cols = []
	 cols.each_with_index do |col, index|
	 # populate corrected columns
	 nval = col
	 if index > 3 # from the fourth column on, the data is numerical. We need to strip non-numbers
	 nval.gsub!(/[^\d]/, '')
	 end
	 corrected_cols[index] = nval[0..(nval.length/2.0).ceil-1]

	 end
	 cols += corrected_cols
	 end
	 end # endif cols.length==9
	 datarows_by_column_count[cols.length] ||= [] # initialize a new array if it doesn't exist
	 datarows_by_column_count[cols.length] << ([line_number]+cols).join("\t")
	 end	

	# now print to files
	datarows_by_column_count.each_pair do |column_count, datarows|
	 if datarows.length > 0
	 File.open("pdf-columns-#{column_count}.txt", 'w'){ |f|
	 f.puts(datarows)
	 }

	 end
	end

	

Method 3: Convert to Text, Measure Column Widths

Unfortunately, not all PDF tables convert to nice HTML. Try the above method on the GSK file, for example. Converting it to HTML results in this mess:

Translating this PDF to HTML does not preserve the column structure.

One possible strategy is to analyze the whitespace between columns. This requires the use of regular expressions. If you don't know about them, they’re worth learning. Even without programming experience, you'll find regular expressions extremely useful when doing data cleaning or even advanced document searches.

The first step is to convert the PDF to plain text. You can use the aptly named pdftotext, which is part of the free xpdf package. We're using a Mac to do this. Linux instructions are pretty similar. Under Windows, your best bet would be to use Cygwin.

For this example, we will use the GSK disclosure PDF, which you can download here.

pdftotext -layout hcp-fee-disclosure-2q-4q2009.pdf

This produces hcp-fee-disclosure-2q-4q2009.txt. The -layout flag preserves the spacing of the words as they were in the original PDF. This is what the GSK file looks like in text form:

	 Fees Paid to US Based Healthcare Professionals for Consulting & Speaking Services
	 1st Quarter through 3rd Quarter 2010
	Health Care Professional Location Payee Name Consultant Speaker Total Fees
	Alario, Frank BAYVILLE, NJ Frank C Alario MD PC $6,500 $6,500

	Alavi, Ali FULLERTON, CA Ali Alavi Consultant, LLC $41,000 $41,000

	Alavi, Ali FULLERTON, CA Ali S Alavi $37,500 $37,500
	

	

Let's look at the easiest scenario of text-handling, where every cell has a value:

Name State Travel Service
Smith, Jon IA 100 200
Doe, Sara CA 200 0
Johnson, Brian NY 0 70

	There's no special character, such as a comma or tab, that defines where each column ends and begins.

However, values in separate columns appear to have two or more spaces separating them. So, we can just use our text editing program to find and replace those to a special character of our choosing.

Regular expressions allow us to specify a match of something like "one space or more." In this case, we want to convert every set of two-or-more consecutive spaces into a pipe character ("|").

Many major text-editors allow the use of regular expressions. We use TextMate. For Mac users, TextWrangler is a great free text editor that supports find-and-replace operations with regular expressions. Notepad++ is a free Windows text-editor; here's a tutorial on how to use regular expressions in it.

In regular expression syntax, curly brackets {x,y} denote a range between x and y occurrences of the character preceding the brackets. So e{1,2} will match 1 to 2 'e' characters. So the regular expression to find "bet" and "beet" is: be{1,2}t.

Leaving off the second number, as in e{1,}, means we want to match at least one 'e', and any number of that character thereafter. So, to capture two-or-more whitespaces, we simply do: " {2,}".

	So entering " {2,}" into the "Find:" field and "|" into "Replace:", we get:

	
	
	
Name|State|Travel|Service|
Smith, Jon|IA|100|200
Doe, Sara|CA|200|0
Johnson, Brian|NY|0|70
	

	Easy enough. But a common problem is when a cell is left blank. This causes two empty columns to be seen as just one empty column, according to our regular expression:

Name State Travel Service
Smith, Jon IA
Doe, Sara CA 0
Johnson, Brian 0 70

Name|State|Travel|Service|
Smith, Jon|IA
Doe, Sara|CA|0
Johnson, Brian|0|70

If you've worked with older textfile databases or mainframe output, you probably have come across tables with fixed-width columns, where the boundaries of columns is a pre-determined length.

	Looking at the above table, we can see that even if there are blanks in the column, the actual data falls within a certain space. So, using regular expressions with a little Ruby scripting, we can programatically determine these columns.
	

	
	We first delimit each row with the " {2,}" regular expression. As we saw in the example above, we'll end up with lines of varying number of columns.

	If we then iterate through each column and find the farthest-left and the farthest-right position per column on the page, according to each word’s position and length, we should be able to produce on-the-fly a fixed-width format for this table.

	
	
	This is easier to explain with a diagram. Here's a sparsely populated table of four columns.

	
1: Banana Currant
2: Alaska Colorado Delaware
3: Bear
	
	
	
	
	
		If we delimit the above with " {2,}", we'll find that the first row will have 2 columns; the second row, 3 columns; and the third, 1 column.		
	

	
	Programmatically, we're going to store each of these lines of text as an array, so Row_1 would be ["Banana", "Current"], for instance. This is just an intermediary step, though. What we really want is where each word begins and ends on that line. If the very first position is 0, then "Banana" begins at position 13 and ends at position 19, that is, 19 spaces from the beginning of the line. Doing this for each line gets us:

1: [13,19](Banana), [24,31](Currant)	
2: [4,10](Alaska), [24,33](Colorado), [36,44](Delaware)
3: [14,18](Bear)

So as we read the values for each line, let's keep a master list of the farthest-left and farthest-right positions of each column.

Reading through the first line, this list will be: [13,19], [24,31], where “Banana” and “Currant” are positioned, respectively.
	

When our script reads through the second line, it finds a word (Alaska) at position 4 and ending at 10.
Since it ends before the starting position (10 < 13) of what the program previously thought was the starting boundary of the first column, it stands to reason that the space containing "Alaska" is actually the table's first column.

	When the script reads "Colorado", it sees that it intersects with "Currant"'s position in the first line. It assumes that the two share the same column (now the third), and changes the definition of that column from [24,31] to [24,33], since "Colorado" is a slightly longer word.

	
	 The list of columns is now: [4,10], [13,19], [24,33], [36,44].

In the third line, the only word is "Bear" and its dimensions fall within the previously defined second column's positions [13,19]

So now with our master list of positions, we can read each line again and break it apart by these column definitions, getting us a four-column table as expected.

Splitting the PDF

When converting the PDF to text, sometimes the columns won't be positioned the same across every page. So let’s begin by splitting the PDF into separate pages by calling pdftotext within Ruby:

	for page_num in 1..last_page_number
		`pdftotext -f #{page_num} -l #{page_num} -layout #{the_pdf_filename} "#{the_pdf_filename.gsub(/\.pdf/i, '')}_#{page_num}.txt"`
	end

	

	And then iterate through each page to calculate its fixed-width format with the algorithm described above. Here's the commented code for the entire program:

	##
	## Note: Run this script from the command line. i.e., "ruby thisscript.rb FILENAME NUMPAGES MIN_COLS LINES_TO_SKIP"
	##

	require 'fileutils'
	class Object
	 def blank?
	 respond_to?(:empty?) ? empty? : !self; end; end

	# filename = name of the PDF file, that will be broken into individual txt files
	# number_of_pages = number of pages in the PDF
	# min_cols = the minimum number of columns, when delimited by \s{2,}, that a line should have before taking into account its column spacing. Setting it to at least 2 or 3 eliminates lines that were mistranslated.
	# lines_to_skip = the number of non-data header lines to skip per page. Should be the same per page, usually.

	if ARGV.length < 4
	 puts "Call format: ruby spacer.rb PDF_FILENAME NUMBER_OF_PAGES_IN_PDF MINIMUM_NUMBER_OF_COLUMNS_PER_LINE NUMBER_OF_HEADER_LINES_TO_SKIP"
	 puts "i.e. ruby spacer.rb `pdftest.pdf` 42 4 3"

	 raise "Please specify all the parameters"
	end

	filename = ARGV.first
	number_of_pages, min_cols, lines_to_skip = ARGV[1..-1].map{|a| a.to_i}

	filedir = File.basename(filename).gsub(/[^\w]/, '_')

	puts "Filename: #{filename}, #{number_of_pages} pages, minimum of #{min_cols} columns, and skip #{lines_to_skip} lines per page"
	FileUtils.makedirs(filedir)

	compiled_file = File.open("#{filedir}/compiled.txt", 'w')

	for page_num in 1..number_of_pages
	 new_f_name = "#{filedir}/#{filename.gsub(/\.pdf/i, '')}_#{page_num}.txt"
		`pdftotext -f #{page_num} -l #{page_num} -layout #{filename} "#{new_f_name}"`
		 puts "#{new_f_name} created"

		 pdf_text = File.open(new_f_name).readlines[lines_to_skip..-1]
		 puts "Opening #{new_f_name} (#{pdf_text.length} lines)"

		 master_column_position_list = []

		 pdf_text.each_with_index do |line, line_number|
		 current_line_pos = 0

	 	 columns = line.strip.split(/ {2,}/).map{|col| col.strip}

	 	 if columns.length > min_cols
	 	 columns.each_with_index do |column, col_index|

	 	 # find the position of the word, starting from current_line_pos
	 	 col_start = line.index(column, current_line_pos)

	 	 # update current_line_pos so that in the next iteration, 'index' starts *after* the current word
	 	 current_line_pos = col_start + column.length

	 # temp variable for easier reading; this is where the current word begins and ends on the line
	 this_col_pos = [col_start, current_line_pos]

	 # with each column-word, find its spot according to the positions we've already found in master_column_position_list
	 # (There's probably a more efficient way than iterating from the beginning of the master-list each time, but there's only 2-12 columns at most...)

	 if master_column_position_list.length == 0
	 master_column_position_list.push(this_col_pos)
	 else

	 master_column_position_list.each_with_index do |master_col_pos, m_index|

	 # check to see if current column-word is positioned BEFORE the current element in master_column_position_list. This happens when the END of the column-word is less than the BEGINNING of the current master-list element
	 if master_col_pos[0] > this_col_pos[1]
	 # push new position before the current index in the master-list
	 master_column_position_list.insert(m_index, this_col_pos)
	 break;

	 # if the column-word's BEGINNING position is after the END of the current master-list position, then iterate unto
	 # the next element in the master-list. Unless we are already at the end; if so, push this column-word onto the array
	 elsif master_col_pos[1] < this_col_pos[0]
	 if m_index == master_column_position_list.length-1
	 master_column_position_list.push(this_col_pos)
	 break;
	 end
	 else
	 ## If there is any overlap in the columns, merge the two positions, taking the minimum of the starting positions and the maximum of the ending positions
	 # elsif master_col_pos[0] = this_col_pos[0]
	 master_col_pos[0]= [master_col_pos[0], this_col_pos[0]].min
	 master_col_pos[1]= [master_col_pos[1], this_col_pos[1]].max
	 break;
	 end

	 end
	 # end of iterating through master_column_position_list
	 end
	 # end of if master_column_position_list.length == 0

	 end
	 # end of iterating through each column.each_With_index

	 end
	 # end of unless line.strip.blank?

	 end
	 # end of each line iteration

	 puts "Master positions for page #{new_f_name}: \n#{master_column_position_list.map{|mpos| "(#{mpos.join(',')})" }.join(', ')}\n\n"

	 # Now create new text_file. We map each position in master_column_position_list onto each line, creating a substring for each element that exists in the master-list. We also prepend the current page number, line number, and the number of columns, for later diagonstics

	 pdf_text.each_with_index do |line, line_number|
	 unless line.strip.blank?
	 compiled_file.puts(([page_num, line_number, master_column_position_list.length] + master_column_position_list.map{|pos| line[(pos[0])..(pos[1])].to_s.strip}).join("\t"))
	 end

	 end

	end
	# end of each page # iteration

	compiled_file.close

You’ll note that in the section where we output the results to compiled_file, we’ve also included the page number, line number, and number of columns in that page. When we try this program on Lilly’s PDF, there are some columns in which the data is spread out enough to be considered separate columns by our program. So keeping track of the columns found per page allows us to quickly identify problem pages and fix them manually.

Because of the wide spacing in this particular PDF-to-text translation, our program would mistakenly create two columns where the original PDF only had one.

PDF-to-Text Anomalies

	Almost every conversion ends up with some strange artifacts. For example, in the above conversion of the GSK document, we get some entries in the last column that are repeated over several lines.
	

	
		I don't know enough about how PDFs are generated to prevent this. But after any conversion, you'll need to use Excel, Google Refine, or some custom code to check that all the fields have values in an expected range.
	

	
	 Regular expressions are pretty much essential to this, allowing you to determine which cells don't fit a certain format, such as an exact length of characters, or a currency format like $xx,xxx.00.

Conclusions
	
There is no single method we could find that does PDF translation perfectly. We recommend trying one of the web services first. If the result isn’t as accurate as you like, it’s not too much work to write some text-processing code.

	
With any method, you may end up spending lots of time cleaning up the occasionally mistranslated cell, but at least it won't be as arduous as manually retyping the entire PDF.
	

The Dollars for Docs Data Guides

Introduction:	The Coder's Cause – Public records gathering as a programming challenge.

	

	Using Google Refine to Clean Messy Data – Google Refine, which is downloadable software, can quickly sort and reconcile the imperfections in real-world data.
		
	Reading Data from Flash Sites – Use Firefox's Firebug plugin to discover and capture raw data sent to your browser.
	Parsing PDFs – Convert made-for-printer documents into usable spreadsheets with third-party sites or command-line utilities and some Ruby scripting.
	Scraping HTML – Write Ruby code to traverse a website and copy the data you need.
	Getting Text Out of an Image-only PDF – Use a specialized graphics library to break apart and analyze each piece of a spreadsheet contained in an image file (such as a scanned document).

									
					
					
								
							
						
					
					

				

				

				
					

 Get the latest news from ProPublica every afternoon.

 Email address

 This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
 	

					

	

										
				Dan Nguyen

									Dan Nguyen was a news application developer at ProPublica.

							

		

			
				
					
						
					
					
				
			
	
				
					
						
					
					@dancow
				
			

	

				

			
 			
				

								

	Follow ProPublica

		
			
				
				Twitter
			
		
	
			
				
				Facebook
			
		
	
			
				
				YouTube
			
		
	
			
				
				RSS
			
		

	
 Stay Informed

 Get our investigations delivered to your inbox with the Big Story newsletter.

 Email address

 This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
	

				

	Most Read

	
		
			
					How a Big Pharma Company Stalled a Potentially Lifesaving Vaccine in Pursuit of Bigger Profits

	How Columbia Ignored Women, Undermined Prosecutors and Protected a Predator For More Than 20 Years

	Idaho Banned Abortion. Then It Turned Down Supports for Pregnancies and Births.

	Louisiana Supreme Court Ruling Overturns Reform Law Intended to Fix “Three-Strikes” Sentences

	Philips Kept Complaints About Dangerous Breathing Machines Secret While Company Profits Soared

			

		

	

			

		

		

			

			
				

			

		

	

	

 	
 Latest Stories from ProPublica

 A Memorial for the Children Lost to Stillbirth

 ProPublica Hires Alanna McLafferty as Senior Product Engineer

 Veterans Affairs Secretary Vows to Increase Staffing at Clinic Tied to Two Deadly Shootings

 ¿Entregaron los narcotraficantes millones de dólares a la primera campaña del Presidente Mexicano López Obrador?

 Close this screen

 Search ProPublica:

 Close this screen

 Republish This Story for Free

 Creative Commons License (CC BY-NC-ND 3.0)

 Thank you for your interest in republishing this story. You are are free to republish it so long as you do the following:

 	You have to credit ProPublica and any co-reporting partners. In the byline, we prefer “Author Name, Publication(s).” At the top of the text of your story, include a line that reads: “This story was originally published by ProPublica.” You must link the word “ProPublica” to the original URL of the story.
	If you’re republishing online, you must link to the URL of this story on propublica.org, include all of the links from our story, including our newsletter sign up language and link, and use our PixelPing tag.
	If you use canonical metadata, please use the ProPublica URL. For more information about canonical metadata, refer to this Google SEO link.
	You can’t edit our material, except to reflect relative changes in time, location and editorial style. (For example, “yesterday” can be changed to “last week,” and “Portland, Ore.” to “Portland” or “here.”)
	You cannot republish our photographs or illustrations without specific permission. Please contact .
	It’s okay to put our stories on pages with ads, but not ads specifically sold against our stories. You can’t state or imply that donations to your organization support ProPublica’s work.
	You can’t sell our material separately or syndicate it. This includes publishing or syndicating our work on platforms or apps such as Apple News, Google News, etc.
	You can’t republish our material wholesale, or automatically; you need to select stories to be republished individually. (To inquire about syndication or licensing opportunities, contact .)
	You can’t use our work to populate a website designed to improve rankings on search engines or solely to gain revenue from network-based advertisements.
	We do not generally permit translation of our stories into another language.
	Any website our stories appear on must include a prominent and effective way to contact you.
	If you share republished stories on social media, we’d appreciate being tagged in your posts. We have official accounts for ProPublica on Twitter, Facebook and Instagram.

 Copy and paste the following into your page to republish:

 Close this menu

 	Graphics & Data
	Topics
	Series
	Videos
	Impact

 	ProPublica
	Local Initiatives
	Data Store

 Follow Us:

 	

 Like us on Facebook

	

 Follow us on Twitter

 Stay informed with the Daily Digest.

 Enter your email

 Site Navigation

 Sections

 	ProPublica
	Local Reporting Network
	Texas Tribune Partnership
	The Data Store
	Electionland

 Browse by Type

 	Topics
	Series
	Videos
	News Apps
	Get Involved
	The Nerd Blog
	@ProPublica
	Events

 Info

 	About Us
	Board and Advisors
	Officers and Staff
	Diversity
	Jobs and Fellowships
	Local Initiatives
	Media Center
	Reports
	Impact
	Awards
	Corrections

 Policies

 	Code of Ethics
	Advertising Policy
	Privacy Policy

 Follow

 	Newsletters
	Podcast
	iOS and Android
	RSS Feed

 More

 	Send Us Tips
	Steal Our Stories
	Browse via Tor
	Contact Us
	Donate
	More Ways to Give

 ProPublica

 Journalism in the Public Interest

 © Copyright 2024 Pro Publica Inc.

 Current site
 Current page

